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i Abstract !
The possibility of aligning the dual goals of an optimal stochastic controller is
discussed. It is suggested that when the measurement function is chosen so that
! these two dual goals are aligned an artificial separation will occur. This will
\ ; occur since the action taken to follow a trajectory will also lead to the best pos-
' ‘ sible use of the control for estimation purposes. A simple set of examples de-
scribing the nature of such alignment and cases of nonalignment is given.
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{ - 1, INTRODUCTION ' The desired trajectory is usually specified in

v i
’ [Inherent in the problem of stabilization and con- e e
: : trol of most dynamic systems, is the problem of cost of a trajectory is its deviation from the de-
processing noise contaminated measurement data s e A e
to obtain accurate information about the state of SN OT SCSRG TSNAE R S CrAVATSS the Srajec-
' E the generally nonlinear stochastic system. If the SRR SRR SERJRCEORY LR TN s WAL
é istate can be accurately estimated, then classical minimizes the combined cost found by adding these
deterministic control techniques, or an approxi- T . ’
'mate linearized quadratic gaussian approach, can 2. TWO GOALS
of : -
. - B SSE1 10 SIvE RREGUNE Ky ST BeTEOK If there are no uncertain system parameters, and
mance. The classical deterministic controller is 2 " " " |
1,2) no noise driving the dynamic system or corrupting
‘ often of the form of a feedback control scheme. the measurements, then, the optimal feedback con-
® As pointed out by Feldbaum, (3) the optimal sto- trol at time teisa function of the state at time tk
‘ chastic controller for nonlinear stochastic sys-
% tems car often be thought of as having two (possi- 2(tk, = w(ﬁt' tk) e t it s
bly conflicting) goals. The first goal is to drive or
the ''true' state of the system over or near a de- ‘ | q
sired trajectory in state space. The second goal 1_1* = ok(xk) k=1,2,...N (2)
4 is to obtain the most accurate information about
: : ‘the vali ol e Mibea® il i The cost is a functional of the control policy i
S ‘ B Srmriipinsion. / o Tl T I i Gl
- W A B

f i i . =




= s L e e e e i A e e

S ere o

Ul(xl). Uz(xz). e UN(xN\] (3)

and the optimal control policy is the set of func-
tions Ul( )» Uz( ), ...UN( ) which minimize the

cost.

However if there are uncertain system parame-
ters, noise driving the dynamic system and/or
noise contaminating the measurements, the "'true"
system stat!' is a random variable as is the cost.
It is genera:\y impossible to know its present val-
ue or to predict its future value with certainty.
Our knowled}z of the state of the system at the
present time :is obtained by filtering the measure-
ment data in ;rder to obtain the best possible es-

timate for -t#te at time k based on all data up to

time tk' (91( /k)'

It should be clear that more accurate estimates of
the present state, and prediction of the future
state of the system, will allow better control of
that state. In general the control policy can affect
ﬁe accuracy of the estimates and predictions.
This use of the control policy to improve state es-
ﬁmtion and prediction is the second '"dual' goal

of the control policy. !

‘A control p&licy that has seen much use is simply
the use of the best estimate for the system state
in place of the "true" but unavailable state in a de-
terministic control policy. This policy is called
the certainty equivalence policy. In terms of the
policy shown in Eq. (2), the certainty equivalence
policy would be written

‘
)
Uk = @, Gy e {
However, since, as pointed out above, the control
policy in general affects the quality of the esti-
mate for the system state, it is possible that in

order to observe the system better, the control
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i 'lhould be driven in a direction different from the

one which would be optimal if there were no noise
contaminating the measurements or driving the

system,

Note that a certainty equivalence control policy, by
its very nature, neglects this second ''dual' goal of
the optimal stochastic control policy. By definition
the control function used in the certainty equiva-
lence policy, (ok( ), is the optimal policy for the
deterministic control problem obtained by replac-
ing all of the noise terms and unknown parameters
by the mean values. The certainty equivalence
control policy [UCE(k), k = 1, N] thus spends all of
its energy in trying to satisfy the first goal, keep-
ing the state on the desired trajectory with a mini-
mum of control energy. This is done ignoring the
uncertainty in the knowledge of the true value of the
‘lystem state and at the expense of the second goal
of learning more about the true value of the state.
Since the knowledge gained by ''probing'" the system
could enhance the accuracy of the state estimate
and thus allow more accurate control, it could
greatly aid in minimizing the overall control cost.
This discussion should point out why the certainty

equivalence policy is generally suboptimal.

¢ ¢

3, CAUTION AND PROBING

In an interesting series of papers by Bar-Shalom

(4,5,6,7) there are discussions of the na-

and Tse
ture of optimal stochastic control policies and cer-
tain approximations to such policies. They note
(similar to Feldbaum) that in stochastic control

systems the optimal stochastic control can have

" two effects. First it can '"probe' the system in or-

der to "look into the future'" and make the most use
of present information about what might be learned
from later measurements. To calculate such a
policy in a feedback sense will require consider-

able mathematical analysia. The second effect



-

WS R N . o~ X -
e e WESTERN PERIOCICALS CO. \_\
- el
‘v;“/ ‘\-"A'I VIO00 RAATR LIETEC 8 ROTH MOLYWOOD @ CAUFORMIL ";-’ <
S /50555 » 9331277 s
. i -
‘they point out is the need for "caution'". The Uy (k) . U,k 3
"caution'' term enters by an apparent increase in l—’CE 'I—JCE

‘the cost of control thereby reducing the amount of
‘control effort that can be used in the optimal sys-
‘tem. Both of these effects arise from a detailed

:study of the structure of the dynamic programing

approach (the Principle of Optimality) and both

effects are due to the second "dual" effect.

4. TWO GOALS, TWO CONTROL VECTORS
i

‘Here a much simpler look at the problem is dis-
‘cussed in a simple tutorial manner. It is hoped
that this discussion will lead to additional insight

'on the part of the reader.

;In any given realization, and at any specified time
step k, the control required to satisfy either of
the two ''dual’ goals in an optimal manner could
be plotted in appropriate control space. The con-
trol needed for the first goal (follow the desired
trajectory ignoring probabilistic considerations) and
the second (obtain the most accurate possible esti-
mate of the system state) need not be conflicting.
On the other hand, they could very well be con-
flicting. In a dynamical system these two control
effects could well be in agreement at one stage

and in opposition at the next.

-v'l‘he possibilities are indicated in Figure 1 for a
single time k. These figures show the possible
relationship between the control which would be
used, ignoring the ability of the control to affect
ﬂle estimation accuracy (UCE), and the control
chosen to give the best, minimum variance, esti-
mate without regard to the desired trajectory

(UEST) at time k.

I

;l.n addition to U CE and UEST

:vector on each figure which would represent the

there could be a zero

correct control vector to use to get minimum con-
trol effort. The cost of control represented by

this last zero vector is already included in the

Yest /
U, (k) U, (k)

Ugst
i B
U, (k) Uz(k)U
U U
~EST ~CE Es'fl
Yok
U, (k) 2(0)
c D
Figure 1

calculation of the deterministic certainty equiva-

lence control (U__). The "estimation optimal"

CE

control U, ST should, perhaps, also be reduced to

account f::r a finite cost for control.

It is enlightening, in certain cases, to think of the
optimal stochastic control at stage k in terms of
these two control vectors. For example, if the
control is incapable of affecting the estimation ac-
curacy, there is no '""estimation optimal'' control
and UEST should not appear on the diagram or
should be given zero weight. It is just in this case
that the ""separation theorem'' can be derived and
the certainty equivalence control is found to be the

optimal stochastic control. (8,9, 10)

At another extreme, one might envision the case
where the control could affect the estimation ac-
curacy, but could not affect the basic deterministic
cost function itself. In this case, there would be
no reason to improve the estimation accuracy and
the optimal control policy would be to use no con-
trol effort. This latter case shows that the second
"dual effect" is secondary to the first.

’ -—
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It should be noted from Figure 1A that the con-
:'troll required for each of the dual effects do not
necessarily have to be different. Thus, in Figure
1A one would use control vectors pointing in the
‘same direction for both effects. If ti.e length of
‘the two vectors is the same at each stage, the
control policy giving the '"best estimation" (UEST)
would be the same as the one ignoring probablistic
effects (UCE If UEST
than U CE’ the optimal control could pe expected
to exhibit some ''caution'', Lo Cr. the other hand,

is considerably shorter

if the two ccntrol vectors were parallel as in Fig-

Eure 1C but UCE was shorter than UEST'

mal control would be expected to be stronger than

that demanded by U This could be thought of
(5)

the opti-

CE’
as additional "probing'".

" "
caution'" U CE and UEST

directions (Figure 1B). In such a case, the con-

In an extreme case of

are actually in opposite

trol used for one goal might be the worst thing you
could do for the other. A detailed study of the dy-
namics and stagewise progression of the system
would be required, to obtain even an approxima-
tion of the true '"optimal stochastic control’’, rath-
er than considerations of the tradeoff of these two
‘controls at each stage. This is because the con-
flict might appear to demand no action at any giv-
_Ion stage but considerations of the effect of the tot-
:al control policy might indicate that effort should
.bo expended immediately to observe the system
'so that it could be controlled more accurately at

.l‘tor stages.,

The possibility of UEST being orthogonal to UCE
is indicated in Figure 1C. While at a single stage,
a control which was the vector sum of the two
:mlght make sense, the continued use of such a
combination (if the orthogonality persisted) could
drive the system far from the desired trajectory.
Th\u. vhilc the orthogonal ""probing'' required by
would affect the optimal control policy, any

! EST
Cprobin(" actually used would have to be consid-

g e ‘.—.":./’..:;’5:".“::;'-‘: PERIODIC .-.é_;"zi CO.

DD e CAlIFOR! 3 LT .
ered later in the trajectory in order to keep the

system on the correct path.

From the above discussion it can be seen that these
are only two cases where the 'optimal stochastic
control law'" can easily be obtained. The first is
when the control cannot affect the estimation accu-
racy and the generally used certainty equivalence
control law is optimal. The second case would be
one where UEST is coincident with UCE at each

stage. In this case, U would again be the opti-

mal control policy. Evcerr:x if the two controls are
only colinear and approximately the same length,
we would expect UCE to drive the state vector in
such a way that the measurements could be used to
adequately estimate the state. Such estimates
might involve the use of fairly complex nonlinear
filters but there would be no need to consider the

dual effect explicitly.

Here we suggest that the choice of the measure-
ment device or measurement function can lead to
the aligning of these two vectors in Figure 1. This
aligning of the two goals will lead to what we define
as a '"'matural probing" of the system, The design-
er should choose his measurement structure so
that it will estimate the state in the best manner
possible when the control system is driving the sys-
tem to desired trajectory. Then the dual goals

will be naturally satisfied without explicit consid-
eration of the effect of the control on the estimation
accuracy. This effect is discussed in terms of a

simple set of examples below.
5. SIMPLE EXAMPLES

Consider the simple scalar stochastic dynamic

control system
X4l = ¢xk+Uk+vlk k,0,1, ... N (5)

where the scalar control is to be chosen in order

to minimize the expected value of the random cost

v —
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R E{c[Uy, U,( ), ... U]} 6)
|
i N+1
H 2 z

C = jg:l (ljxj + bj- lUj_l ) (7)

The noise driving the dynamics is taken to be a
white, zero-mean stochastic process with covari-
ance matrix Qk' The stochastic process Y is

independent of the a priori state x, which is a ran-

‘dom variable with mean ﬁo and covariance Po.
'The relationship between the controls required to
‘satisfy the dual goals at each stage changes with
the choice of measurement function. Consider

the following cases.

Case 1

No measurement information.
Case 2

L Pl B

. Case3

L 2
e Bk ' T

Case 4

2
; e Tl e
Case 5

' lk = SIGN(Hkxk + vk)

In each case v, is taken to be a zero mean white

k
stochastic process with covariance R’kvk is also

independent of both Ve and X,

‘First remember that if Qk and P_ are zero we re-

0
duce to the deterministic case and X is explicitly
available. In this case the optimal deterministic
‘control policy is

D

x * A%
éwhon written as a feedback control policy or
l D k-1 k-2 :

o U... f_uk-l

k
L% = -Awx+e Uyte U,

A
'

. from U

ODICALS CO.
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(

" when written as an equivalent open loop policy.
* The calculation of the Ak is well documented in the

literature. ®

In Case 1 and Case 2 the optimal stochastic control
policy can be explicitly calculated. In Case 1 it is
given by

1 ka k-1
Uk = -A.k(Oxo+¢ U . +...U0

0 )

k-1

and in Case 2 the optimal stochastic control policy

is given as

Ukz = A&

Here gk/k is the best linear estimate of the state
x conditioned on all the measurement data z 2,
cee B and is given by the Kalman filter. In both
cases the control policy is the same as the optimal
deterministic control policy with the state replaced
by the best available estimate for state at stage k.
These optimal stochastic control policies can be
obtained by solving two separate problems, the de-
terministic control problem and the state estima-
tion problem. This fact is called the Separation
Principle. The principle results from the fact that
the control policy has no effect on the estimation
accuracy. In this case the second control UEST in
Figure 1 is indeterminant and should be given no

weight,

Case 3 is discussed in references (11) and (12).
Due to the nature of the cost function UCE will
always try to drive the state estimate to the origin.
However, due to the nature of the measurement the
signal to noise ratio will be worst at the origin and
will get better as the state moves from the origin.

Thus UCE will point in the opposite direction

EST' As shown in reference (12) using

) UCE at the first stage can be the worst possible

control to use. This is the situation indicated in
Figure 1B, | i

\

In Case 4 (discussed in more generality in refer-
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ence 13), the use of the control at stage k-1 will
reduce the accuracy of the measurements at stage
k. Since the best measurements are obtained

when no control is used, U is identically zero,

EST
The optimal control is thus reduced by some

amount from U As can be seen from this

CE’
and as shown in reference (13), the optimal sto-

chastic control is again of the form

*

Uk‘ = Ao
but the weighting matrices (Ak*) are not the same
as in the deterministic case or in Cases 1 and 2.
The control and estimation problem are again
separated but the control is not the certainty e-
CE will in-
crease the noise in the measurements and gener-

quivalence control. The use of U

ally effect the accuracy of the state estimates and
thereby greatly degrade the control performance.
Here the optimal stochastic control exhibits ''cau-
tion'". The optimal stochastic control is aligned
with UCE but reduced in length as it would be in
Figure 1A,

In Case 5, discussed at some length in reference
(14), the two control goals are aligned. The mea-
surement function adds maximum information
about the state when the sign changes unexpectedly
or when the ''true state' is near zero. The de-
sired trajectory in this problem will also require
that the control drive the state to zero (regulator
problem), Thus as shown in reference (14), the
performance obtained from the use of U CE is
very close to a known lower bound to the perfor-
mance of the optimal stochastic control. Thus in
aligning the two control objectives we can approach
the true optimal stochastic control ("'dual perfor-
mance'') with much less computation than required

‘Oo calculate the true ''dual control' law,

e

i
'

z
; |
' 1

6. CONCLUSIONS

Here it has been suggested that, when dealing with
dynamic stochastic systems observed by noisy
measurements, - when possible, measurement
transducers be selected with an eye to aiigning the
two dual control goals. This could result in im-
proved control system performance without re-
quiring increasingly complicated control laws.
The aligning of these two goals will lead to an ap-
proximate type of separation principle in that the
control chosen for the primary goal will tend to
automatically drive the system to improve the ac-

curacy of state estimates.
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